Xilinx U200 Data Center Accelerator Card
The Xilinx Alveo U200 is a PCIe-based data center accelerator card featuring a 3-die Virtex UltraScale+ FPGA. Beethoven provides support for building and deploying accelerators on U200 boards.
U200 support is available in the Beethoven codebase. Build flows and deployment scripts are platform-specific and may require customization for your environment.
Hardware Specifications
| Component | Specification |
|---|---|
| FPGA | Xilinx Virtex UltraScale+ |
| Dies/SLRs | 3 (SLR0, SLR1, SLR2) |
| Memory | 16GB DDR4 (discrete) |
| Interface | PCIe Gen3 x16 |
| Clock Rate | 300 MHz (default) |
| Memory Bandwidth | 512-bit AXI4 interface (64-byte beats) |
Platform Configuration
The U200 platform is configured with the following characteristics:
class U200Platform(implicit p: Parameters) extends Platform {
override val platformType = FPGA
// Memory Configuration
override val hasDiscreteMemory = true
override val physicalMemoryBytes = 16L * 1024 * 1024 * 1024 // 16GB
override val memoryNChannels = 1
override val memoryControllerBeatBytes = 64 // 512-bit interface
// Clock Configuration
override val clockRateMHz = 300
// Multi-Die Topology
override val physicalDevices = List(
DeviceConfig(0, "pblock_SLR0"),
DeviceConfig(1, "pblock_SLR1"),
DeviceConfig(2, "pblock_SLR2")
)
override val physicalConnectivity = List((0,1), (1,2))
// Front Bus (Host Interface)
override val frontBusBeatBytes = 4 // 32-bit AXI-Lite
}
Multi-Die Floorplanning
The U200's 3-die FPGA requires careful floorplanning for timing closure. Use Beethoven's floorplanning infrastructure to place modules across SLRs:
import beethoven._
import beethoven.Floorplanning._
import chipsalliance.rocketchip.config.Parameters
class U200Accelerator()(implicit p: Parameters) extends AcceleratorCore {
// SLR0: Host interface
val cmdInterface = BeethovenIO(
new AccelCommand("process") {
val input_addr = Address()
val output_addr = Address()
val length = UInt(32.W)
},
EmptyAccelResponse()
)
// SLR1: Memory controllers
DeviceContext.withDevice(1) {
val reader = getReaderModule("input_data")
val writer = getWriterModule("output_data")
}
// SLR2: Compute array
DeviceContext.withDevice(2) {
val compute = LazyModuleWithFloorplan(
new ComputeArray,
2,
"compute_array"
)
}
}
See the Floorplanning Guide for detailed multi-die optimization strategies.
Building Your Accelerator
Configuration
Create a build configuration targeting the U200 platform:
import beethoven._
import beethoven.Platforms._
object MyU200Build extends BeethovenBuild(
new MyAcceleratorConfig,
buildMode = BuildMode.Synthesis,
platform = new U200Platform
)
Running the Build
cd Beethoven-Hardware
export BEETHOVEN_PATH=`pwd`/../my-beethoven-output
sbt run
# Select MyU200Build from the menu
This generates:
- Verilog RTL in
$BEETHOVEN_PATH/build/hw/ - C++ bindings in
$BEETHOVEN_PATH/build/beethoven_hardware.{h,cc} - Constraint files in
$BEETHOVEN_PATH/build/user_constraints.xdc
Synthesis with Vivado
The U200 build does not include a pre-packaged shell like AWS F2. You'll need to integrate the generated Verilog with Xilinx's U200 base design:
# Create project
create_project u200_accel ./u200_project -part xcu200-fsgd2104-2-e
# Add Beethoven-generated RTL
add_files $env(BEETHOVEN_PATH)/build/hw/*.v
# Add base U200 design files
# (Platform-specific - depends on your U200 development kit)
# Add constraints
add_files -fileset constrs_1 $env(BEETHOVEN_PATH)/build/user_constraints.xdc
# Run synthesis and implementation
launch_runs synth_1
wait_on_run synth_1
launch_runs impl_1 -to_step write_bitstream
wait_on_run impl_1
Unlike AWS F2 with its pre-built shell, U200 builds require integration with Xilinx's base design or a custom shell. Consult your U200 development kit documentation for shell integration.
Memory Interface
The U200 platform provides a single 16GB DDR4 channel with 512-bit width:
memoryChannelConfig = List(
ReadChannelConfig("input_data", dataBytes = 64), // 512-bit reads
WriteChannelConfig("output_data", dataBytes = 64) // 512-bit writes
)
Maximum theoretical bandwidth: 300 MHz × 64 bytes = 19.2 GB/s
Use wide memory interfaces (64 bytes) to maximize bandwidth utilization. Narrower interfaces (4, 8 bytes) will underutilize the memory controller.
Deployment
Bitstream Loading
Load your bitstream using Vivado Hardware Manager or Xilinx's runtime tools:
# Using Vivado Hardware Manager
vivado -mode tcl
open_hw_manager
connect_hw_server
open_hw_target
set_property PROGRAM.FILE {path/to/bitstream.bit} [get_hw_devices]
program_hw_devices [get_hw_devices]
Runtime Setup
Build the Beethoven Runtime for the U200 (discrete FPGA) platform:
cd Beethoven-Runtime
mkdir build && cd build
cmake .. -DCMAKE_BUILD_TYPE=Release -DTARGET=fpga -DBACKEND=U200
make -j
sudo ./BeethovenRuntime
U200 backend support may require platform-specific drivers and runtime modifications. Consult your U200 development kit documentation for PCIe driver setup.
Testbench Compilation
Your testbench compiles identically to other platforms:
cmake_minimum_required(VERSION 3.30)
project(u200_test)
find_package(beethoven REQUIRED)
set(CMAKE_CXX_STANDARD 17)
beethoven_build(u200_test SOURCES test.cpp)
mkdir build && cd build
cmake ..
make -j
sudo ./u200_test
Performance Optimization
Clock Frequency
The default 300 MHz clock may not meet timing for complex designs. Try:
- Reduce clock: Change
clockRateMHzinU200Platformto 250 MHz or 200 MHz - Add pipelining: Use
RegNext()on critical paths - Optimize floorplanning: Place related modules on the same SLR
Memory Bandwidth
Maximize DDR4 utilization:
- Use burst transfers (large
lenvalues in reader/writer requests) - Overlap computation with memory access
- Prefer sequential access patterns over random access
Resource Utilization
Check per-SLR utilization in Vivado:
report_utilization -hierarchical
Balance resource usage across SLRs using floorplanning constraints.
Comparison with AWS F2
| Feature | U200 | AWS F2 |
|---|---|---|
| FPGA | VU+ (3 SLRs) | VU9P (3 SLRs) |
| Memory | 16GB DDR4 | 16GB DDR4 |
| Clock | 300 MHz | 250 MHz |
| Interface | 512-bit | 512-bit |
| Shell Integration | Manual | Automated |
| Deployment | On-premises | Cloud |
| Cost | Hardware purchase | Per-hour rental |
When to use U200:
- On-premises deployment
- Own hardware infrastructure
- Sensitive data that can't go to cloud
When to use AWS F2:
- Cloud-native workflows
- Don't want to manage hardware
- Automated build flow with AFI generation
Troubleshooting
Timing Failures
If implementation fails timing:
- Check critical path in timing report
- Identify SLR crossings (often bottlenecks on multi-die FPGAs)
- Add pipeline stages or reduce clock frequency
- Review Floorplanning Guide for optimization
Resource Exhaustion
If synthesis fails with resource errors:
- Check per-SLR utilization in Vivado
- Move modules to less-utilized SLRs using
DeviceContext.withDevice() - Reduce design size (fewer cores, smaller scratchpads)
Memory Interface Issues
If memory accesses fail:
- Verify alignment (addresses must align to 64 bytes)
- Check shell integration (memory interface wiring)
- Test with simulation first to isolate hardware from FPGA board issues
See Also
- AWS F2 Platform - Similar 3-die platform with automated flow
- Floorplanning Guide - Multi-die optimization
- Custom Platform - Creating platform definitions
- Memory Interfaces - Memory channel configuration