Skip to main content

Xilinx U200 Data Center Accelerator Card

The Xilinx Alveo U200 is a PCIe-based data center accelerator card featuring a 3-die Virtex UltraScale+ FPGA. Beethoven provides support for building and deploying accelerators on U200 boards.

Platform Status

U200 support is available in the Beethoven codebase. Build flows and deployment scripts are platform-specific and may require customization for your environment.

Hardware Specifications

ComponentSpecification
FPGAXilinx Virtex UltraScale+
Dies/SLRs3 (SLR0, SLR1, SLR2)
Memory16GB DDR4 (discrete)
InterfacePCIe Gen3 x16
Clock Rate300 MHz (default)
Memory Bandwidth512-bit AXI4 interface (64-byte beats)

Platform Configuration

The U200 platform is configured with the following characteristics:

U200Platform configuration
class U200Platform(implicit p: Parameters) extends Platform {
override val platformType = FPGA

// Memory Configuration
override val hasDiscreteMemory = true
override val physicalMemoryBytes = 16L * 1024 * 1024 * 1024 // 16GB
override val memoryNChannels = 1
override val memoryControllerBeatBytes = 64 // 512-bit interface

// Clock Configuration
override val clockRateMHz = 300

// Multi-Die Topology
override val physicalDevices = List(
DeviceConfig(0, "pblock_SLR0"),
DeviceConfig(1, "pblock_SLR1"),
DeviceConfig(2, "pblock_SLR2")
)

override val physicalConnectivity = List((0,1), (1,2))

// Front Bus (Host Interface)
override val frontBusBeatBytes = 4 // 32-bit AXI-Lite
}

Multi-Die Floorplanning

The U200's 3-die FPGA requires careful floorplanning for timing closure. Use Beethoven's floorplanning infrastructure to place modules across SLRs:

U200 multi-SLR accelerator
import beethoven._
import beethoven.Floorplanning._
import chipsalliance.rocketchip.config.Parameters

class U200Accelerator()(implicit p: Parameters) extends AcceleratorCore {
// SLR0: Host interface
val cmdInterface = BeethovenIO(
new AccelCommand("process") {
val input_addr = Address()
val output_addr = Address()
val length = UInt(32.W)
},
EmptyAccelResponse()
)

// SLR1: Memory controllers
DeviceContext.withDevice(1) {
val reader = getReaderModule("input_data")
val writer = getWriterModule("output_data")
}

// SLR2: Compute array
DeviceContext.withDevice(2) {
val compute = LazyModuleWithFloorplan(
new ComputeArray,
2,
"compute_array"
)
}
}

See the Floorplanning Guide for detailed multi-die optimization strategies.

Building Your Accelerator

Configuration

Create a build configuration targeting the U200 platform:

U200 build configuration
import beethoven._
import beethoven.Platforms._

object MyU200Build extends BeethovenBuild(
new MyAcceleratorConfig,
buildMode = BuildMode.Synthesis,
platform = new U200Platform
)

Running the Build

cd Beethoven-Hardware
export BEETHOVEN_PATH=`pwd`/../my-beethoven-output
sbt run
# Select MyU200Build from the menu

This generates:

  • Verilog RTL in $BEETHOVEN_PATH/build/hw/
  • C++ bindings in $BEETHOVEN_PATH/build/beethoven_hardware.{h,cc}
  • Constraint files in $BEETHOVEN_PATH/build/user_constraints.xdc

Synthesis with Vivado

The U200 build does not include a pre-packaged shell like AWS F2. You'll need to integrate the generated Verilog with Xilinx's U200 base design:

Vivado synthesis flow
# Create project
create_project u200_accel ./u200_project -part xcu200-fsgd2104-2-e

# Add Beethoven-generated RTL
add_files $env(BEETHOVEN_PATH)/build/hw/*.v

# Add base U200 design files
# (Platform-specific - depends on your U200 development kit)

# Add constraints
add_files -fileset constrs_1 $env(BEETHOVEN_PATH)/build/user_constraints.xdc

# Run synthesis and implementation
launch_runs synth_1
wait_on_run synth_1
launch_runs impl_1 -to_step write_bitstream
wait_on_run impl_1
Custom Integration Required

Unlike AWS F2 with its pre-built shell, U200 builds require integration with Xilinx's base design or a custom shell. Consult your U200 development kit documentation for shell integration.

Memory Interface

The U200 platform provides a single 16GB DDR4 channel with 512-bit width:

Memory channel configuration
memoryChannelConfig = List(
ReadChannelConfig("input_data", dataBytes = 64), // 512-bit reads
WriteChannelConfig("output_data", dataBytes = 64) // 512-bit writes
)

Maximum theoretical bandwidth: 300 MHz × 64 bytes = 19.2 GB/s

Memory Performance

Use wide memory interfaces (64 bytes) to maximize bandwidth utilization. Narrower interfaces (4, 8 bytes) will underutilize the memory controller.

Deployment

Bitstream Loading

Load your bitstream using Vivado Hardware Manager or Xilinx's runtime tools:

# Using Vivado Hardware Manager
vivado -mode tcl
open_hw_manager
connect_hw_server
open_hw_target
set_property PROGRAM.FILE {path/to/bitstream.bit} [get_hw_devices]
program_hw_devices [get_hw_devices]

Runtime Setup

Build the Beethoven Runtime for the U200 (discrete FPGA) platform:

cd Beethoven-Runtime
mkdir build && cd build
cmake .. -DCMAKE_BUILD_TYPE=Release -DTARGET=fpga -DBACKEND=U200
make -j
sudo ./BeethovenRuntime
Backend Support

U200 backend support may require platform-specific drivers and runtime modifications. Consult your U200 development kit documentation for PCIe driver setup.

Testbench Compilation

Your testbench compiles identically to other platforms:

CMakeLists.txt
cmake_minimum_required(VERSION 3.30)
project(u200_test)

find_package(beethoven REQUIRED)
set(CMAKE_CXX_STANDARD 17)

beethoven_build(u200_test SOURCES test.cpp)
mkdir build && cd build
cmake ..
make -j
sudo ./u200_test

Performance Optimization

Clock Frequency

The default 300 MHz clock may not meet timing for complex designs. Try:

  1. Reduce clock: Change clockRateMHz in U200Platform to 250 MHz or 200 MHz
  2. Add pipelining: Use RegNext() on critical paths
  3. Optimize floorplanning: Place related modules on the same SLR

Memory Bandwidth

Maximize DDR4 utilization:

  • Use burst transfers (large len values in reader/writer requests)
  • Overlap computation with memory access
  • Prefer sequential access patterns over random access

Resource Utilization

Check per-SLR utilization in Vivado:

report_utilization -hierarchical

Balance resource usage across SLRs using floorplanning constraints.

Comparison with AWS F2

FeatureU200AWS F2
FPGAVU+ (3 SLRs)VU9P (3 SLRs)
Memory16GB DDR416GB DDR4
Clock300 MHz250 MHz
Interface512-bit512-bit
Shell IntegrationManualAutomated
DeploymentOn-premisesCloud
CostHardware purchasePer-hour rental

When to use U200:

  • On-premises deployment
  • Own hardware infrastructure
  • Sensitive data that can't go to cloud

When to use AWS F2:

  • Cloud-native workflows
  • Don't want to manage hardware
  • Automated build flow with AFI generation

Troubleshooting

Timing Failures

If implementation fails timing:

  1. Check critical path in timing report
  2. Identify SLR crossings (often bottlenecks on multi-die FPGAs)
  3. Add pipeline stages or reduce clock frequency
  4. Review Floorplanning Guide for optimization

Resource Exhaustion

If synthesis fails with resource errors:

  1. Check per-SLR utilization in Vivado
  2. Move modules to less-utilized SLRs using DeviceContext.withDevice()
  3. Reduce design size (fewer cores, smaller scratchpads)

Memory Interface Issues

If memory accesses fail:

  1. Verify alignment (addresses must align to 64 bytes)
  2. Check shell integration (memory interface wiring)
  3. Test with simulation first to isolate hardware from FPGA board issues

See Also